THE COMPLETE THESIS on PRIME NUMBER EDGE-DETECTION

🧮 Recast Theorist: Prime Edge Graphical Proof

Explore the structural rhythm of primes using the original Recast Heuristic Model.
Adjust N to reveal how ΔB = 1 aligns with actual primes.

Select N (1–1000): Generate
https://cdn.plot.ly/plotly-latest.min.js function isPrime(n) { if (n < 2) return false; if (n === 2) return true; if (n % 2 === 0) return false; const r = Math.sqrt(n); for (let i = 3; i <= r; i += 2) if (n % i === 0) return false; return true; } function E(N) { let s = 0; for (let i = 1; i <= N; i++) s += (i – 1) % 2; return s; } function B(N) { return N – E(N); } function dB(N) { return N i + 1); const Evals = Ns.map(E); const Bvals = Ns.map(B); const dBvals = Ns.map(dB); const primes = Ns.filter(isPrime); const primeEdges = Ns.filter(n => dB(n) === 1); // Plot traces const traceB = {x: Ns, y: Bvals, type: ‘scatter’, mode: ‘lines’, line: {color:’black’}, name: ‘B(N) = N – E(N)’}; const traceE = {x: Ns, y: Evals, type: ‘scatter’, mode: ‘lines’, line: {color:’gray’, dash:’dot’}, name: ‘E(N)’}; const tracePE = {x: primeEdges, y: primeEdges.map(n => Bvals[n-1]), mode: ‘markers’, marker:{color:’red’, size:6}, name:’ΔB=1 (Prime Edge)’}; const traceLines = primes.map(p => ({ x:[p,p], y:[0, Math.max(…Bvals)], type:’scatter’, mode:’lines’, line:{color:’blue’, width:1, opacity:0.2}, hoverinfo:’none’, showlegend:false })); const layout = { title: `Recast Prime Edge Structure (N ≤ ${Nmax})`, xaxis:{title:’N’}, yaxis:{title:’Branch Differential B(N)’}, showlegend:true, legend:{x:0.02, y:0.98}, margin:{l:60, r:20, t:50, b:40} }; Plotly.newPlot(‘chart’, [traceB, traceE, tracePE, …traceLines], layout); const N = Nmax; const En = E(N), Bn = B(N), dBn = dB(N), detN = N – Math.abs(N – Math.abs(B(N) – B(N-1)) – B(N)); const primeEdge = (dBn === 1); const truePrime = isPrime(N); const nxt = nextPrime(N); const gap = nxt – N; document.getElementById(‘info’).innerHTML = `

🔹 Recast Prime Edge Analysis (N = ${N})

E(N)${En}
B(N) = N – E(N)${Bn}
ΔB(N)${dBn}
det(N)${detN}
Heuristic Prime Edge?${primeEdge}
True Prime?${truePrime}
Next Prime${nxt}
Gap${gap}

ΔB = 1 marks a structural prime edge — a minimal non-redundant addition in the branch field. Blue lines mark numerical primes; red dots mark detected prime edges.

`; } // initial render updateChart();